might say, no statistical system can be perfect . Those folks are collateral damage. And often, like Sarah Wysocki, they are deemed unworthy and expendable. Forget about them for a minute, they might say, and focus on all the people who get helpful suggestions from recommendation engines or who find music they love on Pandora, the ideal job on LinkedIn, or perhaps the love of their life on Match.com. Think of the astounding scale, and ignore the imperfections.
Big Data has plenty of evangelists, but I’m not one of them. This book will focus sharply in the other direction, on the damage inflicted by WMDs and the injustice they perpetuate. We will explore harmful examples that affect people at critical life moments: going to college, borrowing money, getting sentenced to prison, or finding and holding a job. All of these life domains are increasingly controlled by secret models wielding arbitrary punishments.
Welcome to the dark side of Big Data.
It was a hot August afternoon in 1946. Lou Boudreau, the player-manager of the Cleveland Indians, was having a miserable day. In the first game of a doubleheader, Ted Williams had almost single-handedly annihilated his team. Williams, perhaps the game’s greatest hitter at the time, had smashed three home runs and driven home eight. The Indians ended up losing 11 to 10.
Boudreau had to take action. So when Williams came up for the first time in the second game, players on the Indians’ side started moving around. Boudreau, the shortstop, jogged over to where the second baseman would usually stand, and the second baseman backed into short right field. The third baseman movedto his left, into the shortstop’s hole. It was clear thatBoudreau, perhaps out of desperation, was shifting the entire orientation of his defense in an attempt to turn Ted Williams’s hits into outs.
In other words, he was thinking like a data scientist. He had analyzed crude data, most of it observational: Ted Williams usually hit the ball to right field. Then he adjusted. And it worked. Fielders caught more of Williams’s blistering line drives than before (though they could do nothing about the home runs sailing over their heads).
If you go to a major league baseball game today, you’ll see that defenses now treat nearly every player like Ted Williams. While Boudreau merely observed where Williams usually hit the ball, managers now know precisely where every player has hit every ball over the last week, over the last month, throughout his career, against left-handers, when he has two strikes, and so on. Using this historical data, they analyze their current situation and calculate the positioning that is associated with the highest probability of success. And that sometimes involves moving players far across the field.
Shifting defenses is only one piece of a much larger question: What steps can baseball teams take to maximize the probability that they’ll win? In their hunt for answers, baseball statisticians have scrutinized every variable they can quantify and attached it to a value. How much more is a double worth than a single? When, if ever, is it worth it to bunt a runner from first to second base?
The answers to all of these questions are blended and combined into mathematical models of their sport. These are parallel universes of the baseball world, each a complex tapestry of probabilities. They include every measurable relationship among every one of the sport’s components, from walks to home runs to the players themselves. The purpose of the model is to run differentscenarios at every juncture, looking for the optimal combinations. If the Yankees bring in a right-handed pitcher to face Angels slugger Mike Trout, as compared to leaving in the current pitcher, how much more likely are they to get him out? And how will that affect their overall odds of winning?
Baseball is an ideal home for predictive mathematical modeling. As Michael Lewis wrote in his 2003 bestseller, Moneyball ,