air. But in the more stable stratosphere, conditions mitigate against
the formation of clouds of water droplets. The coldest air already is at the bottom
of the stratosphere, with warmer air above it, so air rarely rises from the troposphere
into the stratosphere. With no rising plumes of warm air to carry moisture into the
stratosphere, clouds almost never form; the stratosphere is drier than most deserts.
With no clouds, there could be no rain to wash away the stratospheric aerosol veil.
Only the slow action of gravity and the occasional circulation of air between the
stratosphere and the troposphere could drag the droplets back to the earth. And so
the extraordinarily fine sulfur particles from Tambora that reached the stratosphere
remained suspended in the air for years, freely transported around the globe by the
winds. By the winter of 1815–16, the nearly invisible veil of ash covered the globe,
reflecting sunlight, cooling temperatures, and wreaking havoc on weather patterns.
2.
PORTENTS
“The country has all the appearance of the middle of winter…”
F ROM T ERAMO IN central Italy, near the Adriatic coast, came reports in late December 1815 of “the
heaviest snow ever known in that country.” According to one account, over a six-hour
period “a greater quantity of snow [fell] than has been known in the memory of man.”
More astonishing was the nature of the precipitation. The snow “was of a red and yellow
color … [which] excited great fear and apprehension in the people.” Believing that
“something extraordinary has taken place in the air,” the local residents organized
religious processions to placate God; in the meantime, provincial authorities summoned
a professor of physical science from Parma (who was also a Jesuit priest) to study
the phenomenon. For the rest of the winter, the Abruzzo region remained cold, with
significantly more snow and freezing rain than usual.
Several weeks later, an intense blizzard raged across northeastern Hungary for two
days. The snow reportedly covered houses to the rooftops, and killed more than ten
thousand sheep and hundreds of oxen. Despite the magnitude of the storm, news accounts
focused primarily on the fact that “the snow was not white, but brown or flesh colored.”
April brought reports of another colored snowfall in Italy, this time around the Tonale
Pass, in the Italian Alps: “It was brick red and left an earthy powder, very light
and impalpable, unctuous to the touch … [with an] astringent taste.” The colored snow
almost certainly was the result of ice droplets forming with ash particles from Tambora
as their nuclei. The deepest clouds associated with severe storms occasionally are
able to reach into the stratosphere, which is consistent with the colored snow falling
in particularly extreme weather events. Over the course of months—and, in this case,
years—gravity also slowly dragged the stratospheric sulfur particles into the upper
reaches of the troposphere, where the particles could more easily form the centers
of ice crystals.
No contemporary accounts appear to have made the connection between the phenomenon
of colored snow in Italy and Hungary and the eruption of Mount Tambora nearly halfway
around the world, although reports of Tambora had reached London by the end of 1815,
and a few amateur scientists—most famously Benjamin Franklin—had previously essayed
a connection between volcanic eruptions and unusual atmospheric conditions. Following
the eight-month-long eruption of Laki in southern Iceland in June 1783, Europe and
North America experienced highly unusual weather, including a persistent dry haze
during the summer and an extremely cold and snowy winter that killed thousands of
people across Europe. Although Franklin, who was living in Europe at the time, acknowledged
in a 1784 lecture to the Manchester Literary and Philosophical