advances. Indeed, rebooting along the same trajectory that our current civilization followed may now be very difficult. The Industrial Revolution was powered largely by fossil energy. Most of these easily accessible fossil energy sources—deposits of coal, oil, and natural gas—have now been mined toward depletion. Without access to such readily available energy, how could a civilization following ours haul itself through a second industrial revolution? The solution, as we’ll see, will lie in an early adoption of renewable energy sources and careful recycling of assets—sustainable development will likely be forced on the next civilization out of sheer necessity: a green reboot.
In the process, unfamiliar combinations of technologies will emerge over time. We will take a look at examples of where a recovering society is likely to take a different trajectory in its development—the path not traveled—as well as utilizing technological solutions that for us have fallen by the wayside. To us, Civilization 2.0 might look like a mishmash of technologies from different eras, not unlike the genre of fiction known as steampunk. Steampunk narratives are set in an alternative history that has followed a different pattern of development and is often characterized by a fusion of Victorian technology with other applications. A post-apocalyptic reboot with very different rates of progress in separate fields of science and technology is likely to lead to such an anachronistic patchwork.
CONTENTS
A reboot manual would work best on two levels. First, you need a certain amount of practical knowledge handed to you on a plate, so as to recover a base level of capability and a comfortable lifestyle as quickly as possible, and to halt further degeneration. But you also need to nurture the recovery of scientific investigation and provide the most worthwhile kernels of knowledge to begin exploring. *
We’ll start with the basics and see how you can provide the fundamental elements of a comfortable life for yourself after the Fall: sufficient food and clean water, clothes and building materials, energy and essential medicines. There will be a number of immediate concerns for the survivors: cultivable crops must be gathered from farmland and seed caches before they die and are lost; diesel can be rendered from biofuel crops to keep engines running until the machinery fails, and parts can be scavenged to reestablish a local power grid. We’ll look at how best to cannibalize components and scavenge materials from the detritus of the dead civilization: the post-apocalyptic world will demand ingenuity inrepurposing, tinkering, and jury-rigging.
Once the essentials are in place, I’ll explain how to reinstate agriculture and safely preserve a stockpile of food, and how plant and animal fibers can be turned into clothes. Materials such as paper, ceramic pottery, brick, glass, and wrought iron are today so commonplace thatthey are considered prosaic and boring—but how could you actually make them if you needed to? Trees yield an enormous amount of remarkably useful stuff: from timber material for construction to charcoal for purifying drinking water, as well as providing a fiercely burning solid fuel. A whole range of crucial compounds can be baked out of wood, and even ashes contain a substance (called potash) needed for making essential items such as soap and glass, as well as producing one of the ingredients of gunpowder. With basic know-how you can extract a great deal of other critically useful substances from your natural surroundings—soda, lime, ammonia, acids, and alcohol—and start a post-apocalyptic chemical industry. And as your capabilities recover, the quick-start guide will help the development of explosives suitable for mining and for demolishing the carcasses of ancient buildings, as well as the production of artificial fertilizer, and of the light-sensitive silver compounds used in photography.
In later chapters we’ll