changing electric field could, in fact, produce a changing magnetic field that could, in turn, produce a changing electric field, and so on. The result of this coupling was an electromagnetic wave.
Just as Newton had been born the year that Galileo died, so Einsteinwas born the year that Maxwell died, and he saw it as part of his mission to extend the work of the Scotsman. Here was a theorist who had shed prevailing biases, let mathematical melodies lead him into unknown territories, and found a harmony that was based on the beauty and simplicity of a field theory.
All of his life, Einstein was fascinated by field theories, and he described the development of the concept in a textbook he wrote with a colleague:
A new concept appeared in physics, the most important invention since Newton’s time: the field. It needed great scientific imagination to realize that it is not the charges nor the particles but the field in the space between the charges and the particles that is essential for the description of physical phenomena. The field concept proved successful when it led to the formulation of Maxwell’s equations describing the structure of the electromagnetic field. 6
At first, the electromagnetic field theory developed by Maxwell seemed compatible with the mechanics of Newton. For example, Maxwell believed that electromagnetic waves, which include visible light, could be explained by classical mechanics—if we assume that the universe is suffused with some unseen, gossamer “light-bearing ether” that serves as the physical substance that undulates and oscillates to propagate the electromagnetic waves, comparable to the role water plays for ocean waves and air plays for sound waves.
By the end of the nineteenth century, however, fissures had begun to develop in the foundations of classical physics. One problem was that scientists, as hard as they tried, could not find any evidence of our motion through this supposed light-propagating ether. The study of radiation—how light and other electromagnetic waves emanate from physical bodies—exposed another problem: strange things were happening at the borderline where Newtonian theories, which described the mechanics of discrete particles, interacted with field theory, which described all electromagnetic phenomena.
Up until then, Einstein had published five little-noted papers. They had earned him neither a doctorate nor a teaching job, even at a high school. Had he given up theoretical physics at that point, the scientificcommunity would not have noticed, and he might have moved up the ladder to become the head of the Swiss Patent Office, a job in which he would likely have been very good indeed.
There was no sign that he was about to unleash an
annus mirabilis
the like of which science had not seen since 1666, when Isaac Newton, holed up at his mother’s home in rural Woolsthorpe to escape the plague that was devastating Cambridge, developed calculus, an analysis of the light spectrum, and the laws of gravity.
But physics was poised to be upended again, and Einstein was poised to be the one to do it. He had the brashness needed to scrub away the layers of conventional wisdom that were obscuring the cracks in the foundation of physics, and his visual imagination allowed him to make conceptual leaps that eluded more traditional thinkers.
The breakthroughs that he wrought during a four-month frenzy from March to June 1905 were heralded in what would become one of the most famous personal letters in the history of science. Conrad Habicht, his fellow philosophical frolicker in the Olympia Academy, had just moved away from Bern, which, happily for historians, gave a reason for Einstein to write to him in late May.
Dear Habicht,
Such a solemn air of silence has descended between us that I almost feel as if I am committing a sacrilege when I break it now with some inconsequential babble . . .
So, what are you up to, you frozen whale, you smoked, dried, canned piece of