that he had lost his edge, he lamented, “To punish me for my contempt for authority, fate made me an authority myself.” 7
His success came from questioning conventional wisdom, challenging authority, and marveling at mysteries that struck others as mundane. This led him to embrace a morality and politics based on respect for free minds, free spirits, and free individuals. Tyranny repulsed him, and he saw tolerance not simply as a sweet virtue but as a necessary condition for a creative society. “It is important to foster individuality,” he said, “for only the individual can produce the new ideas.” 8
This outlook made Einstein a rebel with a reverence for the harmony of nature, one who had just the right blend of imagination and wisdom to transform our understanding of the universe. These traits are just as vital for this new century of globalization, in which our success will depend on our creativity, as they were for the beginning of the twentieth century, when Einstein helped usher in the modern age.
CHAPTER FIVE
THE MIRACLE YEAR:
Quanta and Molecules, 1905
At the Patent Office, 1905
Turn of the Century
“There is nothing new to be discovered in physics now,” the revered Lord Kelvin reportedly told the British Association for the Advancement of Science in 1900. “All that remains is more and more precise measurement.” 1 He was wrong.
The foundations of classical physics had been laid by Isaac Newton (1642–1727) in the late seventeenth century. Building on the discoveries of Galileo and others, he developed laws that described a very comprehensible mechanical universe: a falling apple and an orbiting moon were governed by the same rules of gravity, mass, force, and motion. Causes produced effects, forces acted upon objects, and in theory everything could be explained, determined, and predicted. As the mathematician and astronomer Laplace exulted about Newton’s universe,“An intelligence knowing all the forces acting in nature at a given instant, as well as the momentary positions of all things in the universe, would be able to comprehend in one single formula the motions of the largest bodies as well as the lightest atoms in the world; to him nothing would be uncertain, the future as well as the past would be present to his eyes.” 2
Einstein admired this strict causality, calling it “the profoundest characteristic of Newton’s teaching.” 3 He wryly summarized the history of physics: “In the beginning (if there was such a thing) God created Newton’s laws of motion together with the necessary masses and forces.” What especially impressed Einstein were “the achievements of mechanics in areas that apparently had nothing to do with mechanics,” such as the kinetic theory he had been exploring, which explained the behavior of gases as being caused by the actions of billions of molecules bumping around. 4
In the mid-1800s, Newtonian mechanics was joined by another great advance. The English experimenter Michael Faraday (1791– 1867), the self-taught son of a blacksmith, discovered the properties of electrical and magnetic fields. He showed that an electric current produced magnetism, and then he showed that a changing magnetic field could produce an electric current. When a magnet is moved near a wire loop, or vice versa, an electric current is produced. 5
Faraday’s work on electromagnetic induction permitted inventive entrepreneurs like Einstein’s father and uncle to create new ways of combining spinning wire coils and moving magnets to build electricity generators. As a result, young Albert Einstein had a profound physical feel for Faraday’s fields and not just a theoretical understanding of them.
The bushy-bearded Scottish physicist James Clerk Maxwell (1831–1879) subsequently devised wonderful equations that specified, among other things, how changing electric fields create magnetic fields and how changing magnetic fields create electrical ones. A