selfish organisms maximizing their inclusive fitness. In many cases the two ways of looking at life will, indeed, be equivalent. As I shall show, ‘inclusive fitness’ was defined in such a way as to tend to make ‘the individual maximizes its inclusive fitness’ equivalent to ‘the genetic replicators maximize their survival’. At least, therefore, the biologist should try both ways of thinking, and choose the one he or she prefers. But I said this was a minimum hope. I shall discuss phenomena, ‘meiotic drive’ for instance, whose explanation is lucidly written on the second face of the cube, but which make no sense at all if we keep our mental gaze firmly fixed on the other face, that of the selfish organism. Moving from my minimum hope to my wildest daydream, it is that whole areas of biology, the study of animal communication, animal artefacts, parasitism and symbiosis, community ecology, indeed all interactions between and within organisms, will eventually be illuminated in new ways by the doctrine of the extended phenotype. As is the way with advocates, I shall try to make the strongest case I can, and this means the case for the wilder hopes rather than the more cautious minimum expectations.
If these grandiose hopes are eventually realized, perhaps a less modest analogy than the Necker Cube will be pardoned. Colin Turnbull (1961) took a pygmy friend, Kenge, out of the forest for the first time in his life, and they climbed a mountain together and looked out over the plains. Kenge saw some buffalo ‘grazing lazily several miles away, far down below. He turned to me and said. “What insects are those?” … At first I hardly understood, then I realized that in the forest vision is so limited that there is no great need to make an automatic allowance for distance when judging size. Out here in the plains, Kenge was looking for the first time over apparently unending miles of unfamiliar grasslands, with not a tree worth the name to give him any basis for comparison … When I told Kenge that the insects were buffalo, he roared with laughter and told me not to tell such stupid lies …’ (pp. 227–228).
This book as a whole, then, is a work of advocacy, but it is a poor advocatethat leaps precipitately to his conclusion when the jury are sceptical. The second face of my Necker Cube is unlikely to click into clear focus until near the end of the book. Earlier chapters prepare the ground, attempt to forestall certain risks of misunderstanding, dissect the first face of the Necker Cube in various ways, point up reasons why the paradigm of the selfish individual, if not actually incorrect, can lead to difficulties.
Parts of some early chapters are frankly retrospective and even defensive. Reaction to a previous work (Dawkins 1976a) suggests that this book is likely to raise needless fears that it promulgates two unpopular ‘-isms’—‘genetic determinism’ and ‘adaptationism’. I myself admit to being irritated by a book that provokes me into muttering ‘Yes but …’ on every page, when the author could easily have forestalled my worry by a little considerate explanation early on. Chapters 2 and 3 try to remove at least two major sources of ‘yes-buttery’ at the outset.
Chapter 4 opens the case for the prosecution against the selfish organism, and begins to hint at the second aspect of the Necker Cube. Chapter 5 opens the case for the ‘replicator’ as the fundamental unit of natural selection. Chapter 6 returns to the individual organism and shows how neither it, nor any other major candidate except the small genetic fragment, qualifies as a true replicator. Rather, the individual organism should be thought of as a ‘vehicle’ for replicators. Chapter 7 is a digression on research methodology. Chapter 8 raises some awkward anomalies for the selfish organism, and Chapter 9 continues the theme. Chapter 10 discusses various notions of ‘individual fitness’, and concludes that they are