startled. How could that be? Two material forms broadly following two distinct sets of principles? The fact that here on Earth there exist two material forms that are distinct in character, are governed by different organizational principles, which comfortably coexist, and in fact continually undergo material interchange—non-living matter is continually transformed into living matter, and vice versa—demands some explanation. How can this stark duality in the nature of matter exist and what does it signify?
Before going any further let me be unequivocal and make one point perfectly clear: it goes without saying that within the teleonomic world the same underlying rules of physics and chemistry that govern the inanimate world are still operative. No doubt about that. When a person falls off a ladder the law of gravity is operative in exactly the same way as when a bag of sugar falls off a shelf. But in many respects those natural laws are of little or no use when applied to living systems. The law of gravity and the Second Law of Thermodynamics aren’t particularly helpful when you are arguing with a neighbour over some property issue, or when seeking to renew an expired licence, or when fending off an aggressive dog. Within the living world those same laws have little predictivevalue—they are certainly operative but appear to be of only secondary importance. The underlying rules of physics and chemistry have somehow been taken hostage and overwhelmed by another more dominant set of principles. If you want to predict the actions of a crouching lion preparing to pounce on an unsuspecting zebra, a mother tending to her young, a lawyer planning to sue you on behalf of an aggrieved client, or indeed any other teleonomic action, the laws of physics and chemistry are of little use. Neither a physicist nor a chemist will be able to offer a useful prediction. If you want to make a prediction about some impending event in the living world, go ask a biologist, psychologist, economist, lawyer, or other teleonomic specialist, depending on the nature of the question.
Not surprisingly then, much of human knowledge and understanding involves the teleonomic, rather than the physicochemical world. Consider for a moment any large university with its many faculties, each dedicated to a particular field of enquiry. The faculties of humanities, commerce, and law (and to a lesser extent, the faculty of medicine), are dedicated to the teleonomic world with its many manifestations. There is just one faculty—the faculty of natural sciences—that dedicates itself specifically to the study of the natural world, and even within this faculty we find the department of biological sciences grappling awkwardly with the teleonomic reality, uncertain as to how the paradox of a dichotomic world can and should be resolved. That, then, is the undeniable, yet so far inexplicable reality—the laws of nature, as primarily articulated in the subjects of physics and chemistry, offer few insights into the predominantly teleonomic world of which we find ourselves very much a part.
Intriguingly, despite the irrefutable teleonomic character of living systems, some biologists still have difficulty in coming to terms with that extraordinary character. The troublesome ‘purpose’ word, now sanitized and repackaged into the scientifically acceptable ‘teleonomy’ word, still leaves many modern biologists squirming uncomfortably. The scientific revolution’s overthrow of 2,000 years of teleological thinking has left biologists anxious and unwilling to accept even the slightest vestige of that earlier, misplaced way of thinking. But there is no denying the teleonomic principle. The evidence supporting it is simply overwhelming, all around, literally endless, and cannot simply be dismissed out of hand.
In fact, it is intriguing to point out that those biologists who have argued against the concept of teleonomy, have, without realizing it, demonstrated their