language to signs; mind to fingers. One witness was amazed at how the telegraphists internalized these skills:
The clerks who attend at the recording instrument become so expert in their curious hieroglyphics, that they do not need to look at the printed record to know what the message under reception is; the recording instrument has for them an intelligible articulate language. They understand
its speech
. They can close their eyes and listen to the strange clicking that is going on close to their ear whilst the printing is in progress, and at once say what it all means. ♦
In the name of speed, Morse and Vail had realized that they could save strokes by reserving the shorter sequences of dots and dashes for the most common letters. But which letters would be used most often? Little was known about the alphabet’s statistics. In search of data on the letters’ relative frequencies, Vail was inspired to visit the local newspaper office in Morristown, New Jersey, and look over the type cases. ♦ He found a stock of twelve thousand E’s, nine thousand T’s, and only two hundred Z’s. He and Morse rearranged the alphabet accordingly. They had originally used dash-dash-dot to represent T, the second most common letter; now they promoted T to a single dash, thus saving telegraph operators uncountable billions of key taps in the world to come. Long afterward, information theorists calculated that they had come within 15 percent of an optimal arrangement for telegraphing English text. ♦
No such science, no such pragmatism informed the language of the drums. Yet there had been a problem to solve, just as there was in the design of a code for telegraphers: how to map an entire language onto a one-dimensional stream of the barest sounds. This design problem was solved collectively by generations of drummers in a centuries-long process of social evolution. By the early twentieth century the analogy to the telegraph was apparent to Europeans studying Africa. “Only a few days ago I read in the
Times
,” Captain Robert Sutherland Rattray reported to the Royal African Society in London, “how a resident in one part of Africa heard of the death—in another and far remote part of the continent—of a European baby, and how this news was carried by means of drums, which were used, it was stated, ‘on the Morse principle’—it is always ‘the Morse principle.’” ♦
But the obvious analogy led people astray. They failed to decipher the code of the drums because, in effect, there was no code. Morse had bootstrapped his system from a middle symbolic layer, the written alphabet, intermediate between speech and his final code. His dots and dashes had no direct connection to sound; they represented letters, which formedwritten words, which represented the spoken words in turn. The drummers could not build on an intermediate code—they could not abstract through a layer of symbols—because the African languages, like all but a few dozen of the six thousand languages spoken in the modern world, lacked an alphabet. The drums metamorphosed speech.
It fell to John F. Carrington to explain. An English missionary, born in 1914 in Northamptonshire, Carrington left for Africa at the age of twenty-four and Africa became his lifetime home. The drums caught his attention early, as he traveled from the Baptist Missionary Society station in Yakusu, on the Upper Congo River, through the villages of the Bambole forest. One day he made an impromptu trip to the small town of Yaongama and was surprised to find a teacher, medical assistant, and church members already assembled for his arrival. They had heard the drums, they explained. Eventually he realized that the drums conveyed not just announcements and warnings but prayers, poetry, and even jokes. The drummers were not signaling but talking: they spoke a special, adapted language.
Eventually Carrington himself learned to drum. He drummed mainly in Kele, a language of the Bantu