Essays in Science Read Online Free Page B

Essays in Science
Book: Essays in Science Read Online Free
Author: Albert Einstein
Pages:
Go to
lack a theory for those parts of space in which electrical density does not disappear. De Broglie conjectured the existence of a wave field, which served to explain certain quantum properties of matter. Dirac found in the spinors field-magnitudes of a new sort, whose simplest equations enable one to a large extent to deduce the properties of the electron. Subsequently I discovered, in conjunction with my colleague, that these spinors form a special case of a new sort of field, mathematically connected with the four-dimensional system, which we called “semivectors.” The simplest equations to which such semivectors can be reduced furnish a key to the understanding of the existence of two sorts of elementary particles, of different ponderable mass and equal but opposite electrical charge. These semivectors are, after ordinary vectors, the simplest mathematical fields that are possible in a metrical continuum of four dimensions, and it looks as if they described, in an easy manner, certain essential properties of electrical particles.
    The important point for us to observe is that all these constructions and the laws connecting them can be arrived at by the principle of looking for the mathematically simplest concepts and the link between them. In the limited nature of the mathematically existent simple fields and the simple equations possible between them, lies the theorist’s hope of grasping the real in all its depth.
    Meanwhile the great stumbling-block for a field-theory of this kind lies in the conception of the atomic structure of matter and energy. For the theory is fundamentally non-atomic in so far as it operates exclusively with continuous functions of space, in contrast to classical mechanics, whose most important element, the material point, in itself does justice to the atomic structure of matter.
    The modern quantum theory in the form associated with the names of de Broglie, Schrödinger, and Dirac, which operates with continuous functions, has overcome these difficulties by a bold piece of interpretation which was first given a clear form by Max Born. According to this, the spatial functions which appear in the equations make no claim to be a mathematical model of the atomic structure. Those functions are only supposed to determine the mathematical probabilities of the occurrence of such structures if measurements were taken at a particular spot or in a certain state of motion. This notion is logically unobjectionable and has important successes to its credit. Unfortunately, however, it compels one to use a continuum the number of whose dimensions is not that ascribed to space by physics hitherto (four) but rises indefinitely with the number of the particles constituting the system under consideration. I cannot but confess that I attach only a transitory importance to this interpretation. I still believe in the possibility of a model of reality—that is to say, of a theory which represents things themselves and not merely the probability of their occurrence.
    On the other hand it seems to me certain that we must give up the idea of a complete localization of the particles in a theoretical model. This seems to me to be the permanent upshot of Heisenberg’s principle of uncertainty. But an atomic theory in the true sense of the word (not merely on the basis of an interpretation) without localization of particles in a mathematical model, is perfectly thinkable. For instance, to account for the atomic character of electricity, the field equations need only lead to the following conclusions: A portion of space (three-dimensional) at whose boundaries electrical density disappears everywhere, always contains a total electrical charge whose size is represented by a whole number. In a continuum-theory atomic characteristics would be satisfactorily expressed by integral laws without localization of the formation entity which constitutes the atomic structure.
    Not until the atomic structure has been successfully
Go to

Readers choose