themselves how the world worked.
For the first few years, Boyle watched, listened, and learned. He had yet to decide what area he wanted to make his own. Meanwhile, whispers of Torricelli's experiment with quicksilver were making their way across the continent. In France, largely beyond the reach of the Roman Inquisitors, a philosopher named Blaise Pascal had caused a great sensation with his public demonstrations, using thirty-foot-long glass tubes filled with water and wine as well as Torricelli's preferred, but less dramatic, quicksilver. He also used the heights of the different liquids forced upward by the air to come up with a value for the total weight of the atmosphere. He an
nounced that our ocean of air weighs some 8,283,889,440,000,000,000 pounds, and he wasn't far off.
From France, news of the experiment had passed across the English Channel to London, where the "Invisibles" were greatly taken with it and performed it many times. Even before Boyle went to Oxford, he had come across the experiment during his frequent visits to London, and it had immediately quickened his interest. He later wrote that air was the perfect subject to study. Not only is it vital for breathing, but it also touches us inside and out every day of our lives. Something that is jointly so necessary and so pervasive would surely be full of hitherto unsuspected scientific treasures. However, Torricelli's experiment had been thoroughly dissected and very frequently reproduced. There didn't seem much more that Boyle could do with it.
Then, in 1657, came sensational news. The Burgomaster of Magdeburg in Germany, one Otto von Guericke, had invented a way to pump air. His method was a little crude, but he was a terrific showman and had used his new air pump to great effect. He had taken two copper hemispheres about twenty inches in diameter, carefully milled so their edges fitted together perfectly and they formed a sealed globe, then used his air pump to remove much of the air inside the globe. Finally, he attached teams of horses, one to either side, and made them heave. With the overwhelming weight of the atmosphere squeezing the two sides together, it took thirty-two straining draft horses to wrench the hemispheres apart.
Boyle was enchanted by this experiment. "Thereby," he wrote, "the great force of the external air ... was rendered more obvious and conspicuous than in any experiment I had formerly known." It didn't quite resolve the issue. Those who were already convinced interpreted it the same way as Boyle, but it was still possible to argue that the vacuum inside the Magdeburg sphere was somehow pulling, rather than the air outside pushing.
What is more important for our story, however, is that von Guericke had invented a new way of working with air. Before then, the only way to make a vacuum was awkwardly, at the top of a Torricellian tube full of quicksilver. Now there was a new way, one that was surely open to experiment. This was exactly what Boyle had been looking for.
Von Guericke's air pump had not been designed for the sort of experiments Boyle had in mind. There was no chamber in which to put equipment, and whatever was being pumped had to be held underwater. However, it was a start and could surely be improved upon. Boyle immediately hired Robert Hooke, the most brilliant experimental designer in England, and set him to work.
Robert Hooke was an irascible hunchback, a hypochondriac with a caustic wit and a terrifying manner. He was also a genius. As engineer and architect he would be second only to Sir Christopher Wren in rebuilding London after the fire that would destroy most of the city in just a few years. Now, although he had only recently completed his studies at Oxford, he was already renowned for his ingenuity. Hooke began to design an air pump that would do everything Boyle desired. He would have no need to fiddle around with quicksilver and thin glass tubes as Torricelli had, nor to hold his pump underwater as